- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, Chaoji (2)
-
Hu, Liangbing (2)
-
Liu, Dapeng (2)
-
Cai, Zhiyong (1)
-
Chen, Qiongyu (1)
-
Fourney, William_L (1)
-
He, Shuaiming (1)
-
Leiste, Ulrich_H (1)
-
Li, Teng (1)
-
Liu, Yang (1)
-
Ma, Zhenqiang (1)
-
Meng, Taotao (1)
-
Pang, Zhenqian (1)
-
Qiao, Yun (1)
-
Wang, Ruiliu (1)
-
Wang, Xizheng (1)
-
Xie, Hua (1)
-
Xie, Weiqi (1)
-
Yang, Vina (1)
-
Yao, Yonggang (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Foam materials are widely used in packaging and buildings for thermal insulation, sound absorption, shock absorption, and other functions. They are dominated by petroleum‐based plastics, most of which, however, are not biodegradable nor fire‐proofing, leading to severe plastic pollution and safety concerns. Here, a fire‐proofing, thermally insulating, recyclable 3D graphite‐cellulose nanofiber (G‐CNF) foam fabricated from resource‐abundant graphite and cellulose is reported. A freeze‐drying‐free and scalable ionic crosslinking method is developed to fabricate Cu2+ionic crosslinked G‐CNF (Cu‐G‐CNF) foam with a low energy consumption and cost. Moreover, the direct foam formation strategy enables local foam manufacturing to fulfil the local demand. The ionic crosslinked G‐CNF foam demonstrates excellent water stability (the foam can maintain mechanical robustness even in wet state and recover after being dried in air without deformation), fire resistance (41.7 kW m−2vs 214.3 kW m−2in the peak value of heat release rate) and a low thermal conductivity (0.05 W/(mK)), without compromising the recyclability, degradability, and mechanical performance of the composite foam. The demonstrated 3D G‐CNF foam can potentially replace the commercial plastic‐based foam materials, representing a sustainable solution against the “white pollution”.more » « less
-
Qiao, Yun; Yao, Yonggang; Liu, Yang; Chen, Chaoji; Wang, Xizheng; Zhong, Geng; Liu, Dapeng; Hu, Liangbing (, Small)Abstract High temperature synthesis and treatments are ubiquitous in chemical reactions and material manufacturing. However, conventional sintering furnaces are bulky and inefficient with a narrow temperature range (<1500 K) and slow heating rates (<100 K min−1), which are undesirable for many applications that require transient heating to produce ideal nanostructures. Herein, a 3D‐printed, miniaturized reactor featuring a dense micro‐grid design is developed to maximize the material contact and therefore acheive highly efficient and controllable heating. By 3D printing, a versatile, miniaturized reactor with microscale features can be constructed, which can reach a much wider temperature range (up to ≈3000 K) with ultrafast heating/cooling rates of ≈104K s−1. To demonstrate the utility of the design, rapid and batch synthesis of Ru nanoparticles supported in ordered mesoporous carbon is performed by transient heating (1500 K, 500 ms). The resulting ultrafine and uniform Ru nanoparticles (≈2 nm) can serve as a cathode in Li‐CO2batteries with good cycling stability. The miniaturized reactor, with versatile shape design and highly controllable heating capabilities, provides a platform for nanocatalyst synthesis with localized and ultrafast heating toward high temperatures that is otherwise challenging to achieve.more » « less
An official website of the United States government
